The Minimum Spanning Tree In C# - Prim's or Dijkstra Algorithm
Written by Mike James   
Sunday, 06 October 2024
Article Index
The Minimum Spanning Tree In C# - Prim's or Dijkstra Algorithm
Prim's Algorithm In C#
Implementing Prim's algorithm
Listing

Listing

The complete listing is:

using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WpfApp1
{

    public partial class MainWindow : Window
    {
        const int size = 10;
        private Point[] Positions = new Point[size];
        private Single[,] Network =
                             new Single[size, size];
        private Random R = new Random();

        public MainWindow()
        {
            InitializeComponent();
        }

        private void setnet(Single[,] Net, Point[] Pos)
        {
            int maxlength = (int)(Math.Min(canvas1.Width,
                                    canvas1.Height) * 0.9);
            int minlength = maxlength / size;
            for (int i = 0; i < size; i++)
            {
                Pos[i].X = R.Next(minlength, maxlength);
                Pos[i].Y = R.Next(minlength, maxlength);
                for (int j = 0; j <= i; j++)
                {
                    Net[i, j] = distance(Pos[i], Pos[j]);
                    Net[j, i] = Net[i, j];
                    if (i == j) Net[i, j] = 0;
                }
            }
        }

        private Single distance(Point a, Point b)
        {
            return (Single)Math.Sqrt((a.X - b.X) *
                                        (a.X - b.X) +
                                         (a.Y - b.Y) *
                                          (a.Y - b.Y));
        }

        private void shownet(Single[,] Net)
        {
            canvas1.Children.Clear();
            Line myLine;
            for (int i = 0; i < size; i++)
            {
                for (int j = 0; j < i; j++)
                {
                    if (Net[i, j] != 0)
                    {
                        myLine = new Line();
                        myLine.Stroke = Brushes.Black;
                        myLine.X1 = Positions[i].X;
                        myLine.X2 = Positions[j].X;
                        myLine.Y1 = Positions[i].Y;
                        myLine.Y2 = Positions[j].Y;
                        myLine.StrokeThickness = 1;
                        canvas1.Children.Add(myLine);
                    }
                }
            }

            Rectangle myMarker;
            for (int i = 0; i < size; i++)
            {
                myMarker = new Rectangle();
                myMarker.Stroke = Brushes.Black;
                myMarker.Fill = Brushes.Red;
                myMarker.Height = 10;
                myMarker.Width = 10;
                myMarker.SetValue(Canvas.TopProperty,
                             Positions[i].Y - myMarker.Height / 2);
                myMarker.SetValue(Canvas.LeftProperty,
                              Positions[i].X - myMarker.Width / 2);
                canvas1.Children.Add(myMarker);
            }
        }


        void prims()
        {
            int[] included = new int[size];
            int[] excluded = new int[size];
            Single[,] finished = new Single[size, size];
            int start = 0;
            int finish = 0;
            for (int i = 0; i < size; i++)

            {
                excluded[i] = i;
                included[i] = -1;
            }
            included[0] = excluded[R.Next(size)];
            excluded[included[0]] = -1;
            for (int n = 1; n < size; n++)
            {
                closest(n, ref start, ref finish,
                                                included, excluded);
                included[n] = excluded[finish];
                excluded[finish] = -1;
                finished[included[n], included[start]] =
                            Network[included[n], included[start]];
                finished[included[start], included[n]] =
                            Network[included[start], included[n]];
            }
            shownet(finished);
        }

        private void closest(int n, ref int start,
          ref int finish, int[] included, int[] excluded)
        {
            Single smallest = -1;
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < size; j++)
                {
                    if (excluded[j] == -1) continue;
                    if (smallest == -1) smallest =
                         Network[included[i], excluded[j]];
                    if (Network[included[i], excluded[j]] >
                                           smallest) continue;
                    smallest = Network[included[i], excluded[j]];
                    start = i;
                    finish = j;
                }
            }
        }

        private void Button_Click_1(object sender,
                                                    RoutedEventArgs e)
        {

            canvas1.Width = 600;
            canvas1.Height = 600;
            setnet(Network, Positions);
            shownet(Network);
        }

        private void Button_Click_2(object sender,
                                                  RoutedEventArgs e)
        {
            prims();
        }
    }
}

Mike James, Founder and Chief Editor of I Programmer is a prolific author. In Deep C#: Dive Into Modern C#, published in September 2021, he provides a “deep dive” into various topics that are important or central to the language. By exploring the motivation behind these key concepts, which is so often ignored in the documentation, the intention is to be thought-provoking and to give developers confidence to exploit C#’s wide range of features.

Related Articles

The Minimum Spanning Tree - Prim's Algorithm In Python


The Minimum Spanning Tree - Prim's Algorithm In Python

Finding the minimum spanning tree is one of the fundamental algorithms and it is important in computer science and practical programming. We take a look at the theory and the practice and discover how [ ... ]



A Customisable Weather Forecast

Having an accurate weather forecast is critical for many situations, in particular for deciding weather conditions are suitable for to deploy infrastructure inspection drones. This [ ... ]


Other Projects


Bun 1.2 Adds Postgres Client
30/01/2025

Bun 1.2 has been released with improvements including progress towards Node.js compatibility, a built-in S3 object storage API and a built-in Postgres client.



VSCode 1.97 Adds Copilot And Python Debugging
13/02/2025

The latest update of Visual Studio Code is now available with free use of GitHub Copilot and the ability to debug Python directly from the terminal.


More News

espbook

 

Comments




or email your comment to: comments@i-programmer.info

<ASIN:B09FTLPTP9>



Last Updated ( Sunday, 06 October 2024 )