Q.bo and the Xtion Pro Live 3D sensor
Q.bo and the Xtion Pro Live 3D sensor
Written by Lucy Black   
Tuesday, 27 March 2012

The Q.bo robot has been experimenting with using the Xtion Pro to provide it with 3D vision.

The team at TheCorpora Robotic Company has added an ASUS's Xtion Pro Live sensor to the existing set of sensors for Q.bo, its cute soon-to-be-released robot. Q.bo already has two HD webcams and can be fitted with 4 ultrasound sensors (2 in the front, and 2 in the rear), but in an attempt to give it a 3D sensing capability, the team crafted an adapter for the small. lightweight ASUS sensor in a mount that fits over Q.bo's head.

 

qbo3d

 

The blog post announcing this innovation explains:

The ability of autonomous localization and simultaneous mapping are crucial for autonomous robots who need to adapt to their environments. In Robotics, this method is known as SLAM (Simultaneous Localization And Mapping) and it can be implemented in several algorithms relevant to 2D or 3D environments by using different types of input sensors (laser, sonars, odometry, webcams, etc.).

 

[The ASUS] sensor emits a 3D point cloud that, along with the robot’s odometry sensor and the incorporated gyroscope, enables Q.bo to build maps, 3D modeling of objects and autonomous localization in real-time. This system can be seen as a more accurate and sophisticated visual perception compared to the stereoscopic cameras or the ultrasound sensors. However, the joint use of all systems (ultrasounds, webcams and Xtion) can generate a much more complete information than the separate use of each.

 

 

This 5-minute video shows the Xtion Pro Live sensor being mounted over a prototype mold designed by Thecorpora’s team and then it shows three experiments using Q.bo and the Xtion Pro live sensor:

  • Real-time 3D visualization of the point cloud emitted by the Xtion Pro Live using  the ROS visualization tool called RViz to view Q.bo’s 3D model in a desktop with a NVIDIA GeForce GTX 295 as GPU.
  • SLAM (Simultaneous Localization And Mapping) in which the robot builds a 2D map of his environment using the laser scan emitted by the Xtion Pro Live sensor. Here the ROS package, Gmapping,  is used for the SLAM algorithm developed by Giorgio Grisetti, Cyrill Stachniss and Wolfram Burgard.
  • Autonomous navigation, reusing the built 2D map stored after using SLAM. The initial location and goal position of Q.bo robot is indicated using the RViz visualization tool. For the autonomous localization, we have used the “amcl” ROS package developed by Brian P. Gerkey. It contains an implementation of a particle filter-based localization algorithm that exploits the laser scan obtained by the Xtion Pro live and the 2D Map. For the movement instructions, we used the ROS package “move_base” developed by Eitan Marder-Eppstein. The “move_base” package contains the implementation of a global and a local 2D motion planners which use the laser scan (emitted by Xtion Pro Live) to detect close obstacles.

 

QBO

 

 

More Information

Q.bo Blog

ROS Wiki

Related Articles

A Robot Recognizes Itself

 

 
 

 

blog comments powered by Disqus

 

To be informed about new articles on I Programmer, subscribe to the RSS feed, follow us on Google+, Twitter, Linkedin or Facebook or sign up for our weekly newsletter.

 

Banner


Microsoft Kills The Kinect - Another Nail
03/01/2018

If you need a lesson in how Microsoft, and to be fair other tech companies, can kill an important product, you need look no further than the drawn out death of the Kinect.



Hash Code 2018 Registration Opens
22/01/2018

Registration has opened for Hash Code 2018, Google's team programming competition for students and professionals in  Europe, the Middle East, and Africa. This is the fifth edition of Hash Code wh [ ... ]


More News

Last Updated ( Saturday, 24 June 2017 )
 
 

   
Banner
RSS feed of news items only
I Programmer News
Copyright © 2018 i-programmer.info. All Rights Reserved.
Joomla! is Free Software released under the GNU/GPL License.