Foundational Python For Data Science

Author: Kennedy Behrman
Publisher: Pearson
Pages:256
ISBN: 978-0136624356
Print: 0136624359
Kindle: B095Y6G2QV
Audience: Data scientists
Rating: 4.5
Reviewer: Kay Ewbank

This book sets out to be a simple introduction to Python, specifically how to use it to work with data.

The book opens with an introduction to notebooks, with sections on Jupyter notebooks and Google Colab. The emphasis is much more on Colab, essentially you're told that Jupyter exists, and the author uses Colab for showing how to do things.

 

Banner

Python fundamentals are introduced next, with a couple of pages running through the main Python statements, then basic math operations, and how to use dot notation for classes and objects. This is very much along the lines of covering the absolute basics of what you need to know to use and do minor modifications to existing code.

A chapter on sequences comes next, essentially introducing the way you work with data in Python. Other data structures are then introduced - dictionaries, sets and frozen sets. Behrman then looks at execution control - compound statements, ifs and loops, before introducing functions.

The next part of the book concentrates on the main data science libraries, with chapters introducing and showing how to work with NumPy, SciPy and Pandas. Behrman then looks at other libraries for visualization, machine learning, and natural language work.

The third part of the book goes back to Python, with chapters on functional programming, object-oriented programming, and a catch-all 'other topics'.

I thought this was a good book. It takes a very pragmatic view of what someone might need to know if they are mainly interested in getting at the data, and need a bit of Python to be able to make things work.

It's not a book I'd recommend for learning to program, but there's a lot you can still do if you know how to write (or modify) a short bit of code so you can make use of NumPy or Pandas. Recommended.

To be informed about new articles on I Programmer, sign up for our weekly newsletter, subscribe to the RSS feed and follow us on Facebook or Linkedin.

Banner


Quick Start Guide to Large Language Models

Author:  Sinan Ozdemir
Publisher:  Addison-Wesley
Pages: 288
ISBN: 978-0138199197
Print: 0138199191
Kindle: B0CCTZMFWF
Audience: LLM Beginners
Rating: 5
Reviewer: Mike James
We all want to know about LLMs, but how deep should you go?



Expert Performance Indexing in Azure SQL and SQL Server 2022

Author: Edward Pollack & Jason Strate
Publisher: Apress
Pages: 659
ISBN: 9781484292143
Print: 1484292146
Kindle: B0BSWH65ST
Audience: DBAs & SQL devs
Rating: 4 or 1 (see review)
Reviewer: Ian Stirk 

This book discusses indexes, a primary means of improving performance in SQL Server, how does  [ ... ]


More Reviews

 

 

Last Updated ( Saturday, 23 July 2022 )